
The Microservice 

Checklist
Microservices provide the ability to breakdown 

complex systems into independent, and reusable, 
services. There are many hidden challenges in this 
approach and this Microservice checklist and the 
associated Microservice starter kit attempt to help 

you avoid these challenges!

01 SERVICE NAMING
All services should follow the same naming convention and 
use a DNS name to be addressed.

[service name]-service.[env].[domain].com
eg:

album-service.dev.tiltwire.services

02 ENDPOINT NAMING
All endpoints should be resource based. Resources with more 
than one word should be hyphenated:

/albums

03 REST
All services should follow the REST standards (REST API URI 
Naming Conventions and Best Practices) and as such all 
endpoints should be resource based and not action based 
(eg: employees instead of add-employee).

04 STANDARD PLAYLOAD FORMAT
All request and response payloads must be in JSON format 
with property names specified in camelCase.

{
“firstName”: “John”,
“lastName”: “Smith”,
“address”: {

“street”: “21 King St.”,
“city”: “New York”,
“state”: “NY”,
“zipCode”: “10042”

}
}

05 CONSISTENT ERROR RESULTS
Errors should be handled using an appropriate HTTP Result 
Code as well as a simple payload body with more details. The 
simple body should be as follows:

{
“datetime”: “2024-03-21”,
“traceId”: “”,
“status”: 500,
“title”: “Internal Server Error”,
“stackTrace”: “”

}

06 CENTRALIZED LOGGING
By default, Docker/K8s logs are written to the console inside 
each pod when running inside K8S. This is troublesome as it can 
require ssh access to the host in order to view the logs. Further, 
logs are isolated from each other making tracing calls across 
multiple services difficult and time consuming. The ELK stack 
solves this problem for us. All services should write all logs to 
Logstash which makes them available for searching/filtering 
in Kibana. This is a very powerful tool as it allows us to filter by 
date/time range, service name, transactionId and other things 
in a convenient and powerful UI.

07 OPENAPI (IN NON-PROD!)
Swagger is an excellent middleware that exposes a webpage 
that allows developers to fully interact with all endpoints 
exposed in a service. It also supports Authentication so a JWT 
token can be provided on guarded calls. Most languages 
provide an implementation of Swagger.

08 SERVICE DISCOVERY
A service registry is a central location for service discovery. It 
prevents services and apps from having to hard code or make 
assumptions about the locations of dependent URIs. All service 
dependencies should be retrieved, at startup, from the Service 
Registry by calling on of the endpoints available.

09 DB MIGRATIONS
When dealing with dozens of services, across multiple 
environments, it is critical that we reduce any and all manual 
intervention required to get a service up and running. As such, 
all services should use a framework to enable automated 
database migrations which will handle creating all required 
schema and any data population/manipulation to make the 
service function as expected once deployed. Some examples 
are Entity Framework (C#) and Flyway (Java).

10 HEALTH ENDPOINT
A healthy service is a happy service! A health endpoints 
ensures that service health can be easily checked by K8S or 
other systems.

eg:
https://some-service.dev.tiltwire.services/healthz

For the complete Microservice Starter Kit visit:

www.tiltwire.com/ms
Copyright © 2025 Tiltwire

http://www.tiltwire.com
http://www.tiltwire.com
https://www.tiltwire.com/ms

